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ABSTRACT :The main object of this paper is the construction of the
Serre spectral sequence by means of twisted tensor products- The basic tool in
this development, which is completed in section 32, is Brown’s theorem, which
gives a natural equivalence between Cy(F Xt B) and Cy(B) Q. Cy(F) on the
category of twisted Cartesian products, where t is a twisting cochain determined
by the twisting function t- In order to define twisting cochains, the theory of
cup, Pontryagin, and cap products is developed in [3]- Of course, the definition
of these products depends on the Eilenberg-Zilber theorem, and this is proven in
ref [4]- The proofs of bothe
Brown’s theorem and the Eilenberg-Zilber theorem rely on the method of acyclic
models, which is described in ref [5] - The models for Brown’s theorem are
defined in terms of functions which assign to a (reduced) simplicial set K a
simplicial group G(K) and a PTCP G(K) Xt K such that T(E(t)) is contractible-
G(K) is called a loop group of K- G(K) and G(K) Xt K are defined in [6] - In
ref [7], it is shown that G and W are adjoint functions, the suspension E(K) of
a complex K is defined, and miscellaneous results about the functions G, W and E

are obtained-
INTRODUCTION:

In this paper, we will prove the existence of loop groups of reduced complexes,
that s, of complexes having just one vertex- We will also give a

reinterpretation of the Hurewicz homomorphism- The method of acyclic models
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was introduced by Eilenberg and Maclane in [2], and was used in [3] to prove
the Eilenberg-Zilber theorem- Our treatment follows these source and
Maclane[13]- Most of the material of the last three sections is contained,in
rather different form, in Gugenheim [5]- Section 30 relies heavily on
suggestions of J-C- Moore: A systematic study of Hopf algebras may be found
in Milnor and Moore [9]- The proof of Brown’s theorem is parallel to, but
simpler than, the topological proof given in his original paper [3]- An explicit
expression for a twisting cochain T(t) in terms of the twisting function t has

been obtained by Szczarba [12]-

The Serre spectral sequence was, of course, studied in the classical
paper [10], following its introduction in cohomology by Leray [7, 8] The
approach here shows that the introduction of cubical singular theory is
unnecessary, a fact shown by Gugenheim and Moore [6] using quite different
methods: Brown [3] proved that the spectral sequence defined here is in fact
isomorphic to that defined by Serre- Szczarba [12] studied the products in the
Wang spectral sequence using twisted tensor products: The form of d,.; and 8,4
in the case of n-triviality was discovered by Fadell and Hurewicz [4], but of
course the result is there proven by Shih in [T7]-

DEFINITION - 1

A group complex G is said to be loop group of the complex K if there exists a
PTCP E(t) = G Xc K such that T(E(t)) is a contractible space:

EXAMPLE:

K(m, n) is of course a loop of K(m, ntl)- By Leema 234, if K is a Kan complex,
then L(K) is a loop group of K provided that L(K) admits a structure of

simplicial group-
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If K is a reduced complex and Ko = ko, we will let K, denote siky,- We now define

a loop group of such a complex-

DEFINITION - 2 Let K be a reduced complex- Define G,(K) to be the free group
generated by the elements of K, modulo the relations soX = e, for x €Kn.
G,(K) is of course a free group: If x € Kur1, let t(x) denote the of x in G,(K)-

Define face and degeneracy operators
on G(K) by :
T(80x) S01(x) = T(81X)
(7T) orc(x) = t(8wx) iFi > 0O
d(x) = t(smx) if i = O-

The 6; and s; extended uniquely to homomorphisms G,(K) — G,/ (K) and G,(K)
— Gni(K): G(K) so defined is easily verified to be a group complex, and t: K
— G6(K) isclearly a twisting function- We let E(t) = G(K) x K- We must prove
that T(E(t)) is contractible, and it suffices to prove w;,(T(E(t))) = O and
H.,(E(t)) = 0, n = O-

LEMMAT :

m(T(E(T))) = O

PROOF :Recall that m,(T(E(t))) can be considered as a group having one
generator for each T-cell not in a maximal tree and one relation for each 2-cell-
We regard non-degenerate simplices (§,x) as denoting the corresponding cells- The
T-cells (sog, x), x € K; non-degenerate and g € Go(K), form a maximal tree: This
holds since 8o(sog, x) = (t(x) g,ko) and 8:(sog, x) = (§,ko), which implies that
any two O-cells can be connected in one and only one way by T-cells of the cited
form- We must show that every T-cell (§,x), § non-degenerate, homotopic to

the product of T-cells in the maximal tree and their inverses(reverses):- The 2-cell

JETIR1804395 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 1045


http://www.jetir.org/

© 2018 JETIR April 2018, Volume 5, Issue 4 www.jetir.org (ISSN-2349-5162)

(51§, sox) shows that (g,x) is homotopic to (sodod,x)(d,k): If § = t(y)'g, the
2-cell (sog, y) shows that (§,6:y) is homotopic to (g,80y) (s0di1g, 62y): If § =
t(y)g, the 2-cell (sog, y) shows that (§,80y) is homotopic to the product of
(4,81y) (5081, 82y)7- Combining these relations, (§,x) is homotopic to the
product of (g,k;) with T-cell of the maximal tree or their reverses, where the

group theoretic length of g- Inductively, since
er = Soeo, the result is proven-
LEMMA 2 : H,(E(t)) = O, n =0O-

PROOF : Consider C,(E(t)), where (eo, ko) is taken as base point- For § €
G,(K) and x € K,., define [§,x] € C.(E(T)) by :

(D) [9.X] = (*(X)g, ox) = (G, ko)

Observe that [§, kni] = O and define B = {[g’,x]lxi Knsr}e Suppose for the
moment that we know that B is a basis for the free Abelian group C,(E(t)), and
define 5 : C,(E(t)) — C.u(E(T)) by

(i) 5[9,x] = Eizo(=1)! [5G (s0)™ (81)'x]"

Using the easily verified relationsAt this point we have developed all the requisite

machinery to define twisting cochains:

DEFINITION 3 : Let t € C(B:C(G)), so that t,:C,(B)—~C,1(G)-
Define d.: C(B) @ C(F) —» C(B) ® C(F) by:
(18) d(b ® £) =d(b®F) +tn (b,

Using (8) and (9), we find dZ(b @ £) = (8(t) + t U t) n (b ® £): t is said to
be a twisting cochain if §(t) + t U t = O, that is, if
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(79) dt, + t,qd + Yt U t,r = 0, n >,

and if et; = O (so that (¢ Qe)d, = (¢ Qe)(t N) = 0)- Then d. is called the
differential twisted by t and C(B) ® C(F) furnished with this differential is
denoted by C(B) Q: C(F) and is called a twisted tensor product- Dually,
Hom(C(B) Q: C(F),N) is given the differential &, defined by (17) with 8, and d,

replacing 6 and d, or:
(20)8.(h) = 8Ch) + (-1)* " h U ¢t
- Brown’s Theorem

Brown’s theorem states essentially that there is a natural way to
assign to every twisting function 1T a twisting cochain t in such a manner that
C(F X: B) is chain homotopy equivalent to C(B) Q: C(F)- In the last section,

this result will be used to construct the Serre spectral sequence-

Unless otherwise specified, the symbols C and C will denote the
normalized chain and cochain functors in this section and the next, and the

symbol (n) will refer to formula (n) of section 30-

We will use the method of acyclic models, and we must first define a

cateqgory, the objects of which are all twisted Cartesian products-
DEFINITION 4 :

Let F X: B and F' Xv B’ be TCP’s with groups G and G’, and let Y: G

— G’ be a simplicial homomorphism-
A Y-map 0: E(t) = E(T’) is a simplicial map such that

8(f,6) = (W(b)a(h),B(b)),

where a: F - F is aY-equivalent map, B: B — B’ is a simplicial map, and : B —

G’ is a function- Clearly p’0 = Bp: We will write 0 = (a,B,{).0 is said to beY-
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special if Yt = 1B+ The requirement that © be a simplicial map is equivalent to

the identities :
TB(BISV(b) = W(Sob)yt(b)
(V) s(b) =y(sb) if i>0
sip(b) =Y(sb) if iz 0
The composite of a Y-map 0 and Y'-map 0’ is the Y'Y-map

0’0 = (a,B'B,(W'B).(YW)). With the obvious identity maps, we have defined a
category whose objects are all TCP’s and whose maps are all Y-maps- If maps are
required to be special, we obtain a subcategory with the same objects, which we
shall call R+ P will denote the subcategory of R, the objects of which are all
PTCP’s- Observe that if 6 = (a,B,U) is a Y-map of PTCP’s, then necessarily o =
Y- If base complexes are required to be reduced, we obtain subcategory Ro of R

andPo of P. The categories Ry and Po will be of primary interest to us-
The symbol F x. B will denote ambiguously an object of

Ro or the corresponding total complex- We now define model objects in the
category Ro- Let A[n] denote A[n]/ A[n]°, where A[n]° denotes of Ro denoted
the zero skeleton of A[q], and define the models MP9 of Ro by :

() M7= (6(A[p] x A[q]) xp) ALP]-
For clarity, we have here denoted the following twisting function
Alp] = G(A[p])
by t(p):- G(A[p]) operators on the fibre G(A[p] x A[q] via
g(g'su) = (4g'.w)- clearly
(i) MP7 = (G(A[p] *cp ALP]) X A[q])

Therefore the realization of each MP? js contracticible-
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Using the models, we can assign a twisting cochain to each twisting function- We

first need a definition-

DEFINITION &5 : A twisting cochain on the category Po is a function T which
assigns a twisting cochain T(t)eHom' (C(B),C(G)) to each twisting function t : B
— 6, B a reduced complex, in such a manner that the following conditions are

satisfied :

(T7) T(t)(b) = eo - T/(b) for all nondegenerate b € B;

(T-2) If t(b) = e, for all b € B, and all g<n, then T(t)(b) =0
For all nondegenerate b € B, and all q<n-

(T-3) IF6 = (v.B,0): 6 xx B>G xcB’ is a Y- special map of

PTCP’s, then the following diagram is commutative :

(o)
c(B) >C(6)
B T b
c«(8’) > «e)

THEOREM T : There exists a twisting cochain on the category Po-

Proof :- Let G x. B be PTCP, B areduced complex- Define T(t); by formula (T-7)
and define T(t)2 by :

(T-4) T(t)(b) = -t/(b) - so T/ (60b) for all non-degenerate b € Ba- Clearly ¢-
T(t); = O, and dT(t)> + T(t)d + T(t); U T(t); = O is proven by an easy
calculation- Condition (T-2) holds for n=2 since e; is degenerate and therefore
zero in C(G)- Suppose inductively that T(t), has been defined for i < q, q > 2-
We require that

dT(t), = ~T(V)d = X T(@) U T()gi = Xy, say,
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Clearly dX, = O - First consider G(A[q]) Xy A[q]- since H.(G(A[q])) = O for
n>0, there exists m € C.i(G(A[q])) such that d(m) = X,(A,)): we define
T(r(q))(A,) = m- Next consider G(K)xi K, t(K) : K = G6(K), K any reduced
complex, and let x € K, be non-degenerate: x:A[q] — K includes

G(%):6(A)[q])>G(K) and we define:
T(t(K))(x) = 6(x)*(m) €Cq1(G(K)): Then we have:

dT(t(K))(x)= 6(X)*d(m) = G(X)*X,(B)s = Xo(X(Ds)) = Xo(X)-

Finally, consider the arbitrary PTCP G x. B and let b € B, be nondegenerate- If t
is induced by f(t): B » W(G), define :

T(t)(b) = OU()LT(t(B))(b)] € C;1(G), where ®(f(t)): G(B)-G is as
defined in Corollary 27-2- Then again we find dT(t)(b) = X,(b)- Condition (T-2)
holds since for any ¢ € B, , ®(f(t))(t(B)(c)) = t(c), and since e,; is degenerate:
Clearly condition (T-3) is satisfied, and this completes the proof

CONCLUSION :We can now define the two functors A and Br :Ro — C that
we wish to compare by the method of acyclic models: Thus define A(F x. B) =
C(F % B) and BH(F xx B) = €(B) Q. C(F), where t = T(t), T being a fixed
twisting cochain on the category Po: Observe that 6 = (a,B,V) is a Y-special map
of TCP’s, then (T-3) and (10) of above Lemma quarantee that Br(0) = - @ a-

is a chain map-
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