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  ABSTRACT :The main object of this paper is the construction of the 

Serre spectral sequence by means of twisted tensor products. The basic tool in 

this development, which is completed in section 32, is Brown’s theorem, which 

gives a natural equivalence between CN(F Xτ B) and CN(B) ⊗t CN(F) on the 

category of twisted Cartesian products, where t is a twisting cochain determined 

by the twisting function τ. In order to define twisting cochains, the theory of 

cup, Pontryagin, and cap products is developed in [3]. Of course, the definition 

of these products depends on the Eilenberg-Zilber theorem, and this is proven in 

ref                                              [4]. The proofs of bothe 

Brown’s theorem and the Eilenberg-Zilber theorem rely on the method of acyclic 

models, which is described in ref [5] . The models for Brown’s theorem are 

defined in terms of functions which assign to a (reduced) simplicial set K a 

simplicial group G(K) and a PTCP G(K) Xτ K such that T(E(τ)) is contractible. 

G(K) is called a loop group of K. G(K) and G(K) Xτ K are defined in [6]  . In 

ref [7], it is shown that G and 𝑊̅ are adjoint functions, the suspension E(K) of 

a complex K is defined, and miscellaneous results about the functions G, 𝑊̅ and E 

are obtained. 

INTRODUCTION: 

In this paper, we will prove the existence of loop groups of reduced complexes, 

that is, of complexes having just one vertex. We will also give a 

reinterpretation of the Hurewicz homomorphism. The method of acyclic models 
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was introduced by Eilenberg and MacLane in [2], and was used in [3] to prove 

the Eilenberg-Zilber theorem. Our treatment follows these source and 

MacLane[13]. Most of the material of the last three sections is contained,in 

rather different form, in Gugenheim [5]. Section 30 relies heavily on 

suggestions of J.C. Moore. A systematic study of Hopf algebras may be found 

in Milnor and Moore [9]. The proof of Brown’s theorem is parallel to, but 

simpler than, the topological proof given in his original paper [3]. An explicit 

expression for a twisting cochain T(τ) in terms of the twisting function τ has 

been obtained by Szczarba [12]. 

  The Serre spectral sequence was, of course, studied in the classical 

paper [10], following its introduction in cohomology by Leray [7, 8]. The 

approach here shows that the introduction of cubical singular theory is 

unnecessary, a fact shown by Gugenheim and Moore [6] using quite different 

methods. Brown [3] proved that the spectral sequence defined here is in fact 

isomorphic to that defined by Serre. Szczarba [12] studied the products in the 

Wang spectral sequence using twisted tensor products. The form of dn+1 and δn+1 

in the case of n-triviality was discovered by Fadell and Hurewicz [4], but of 

course the result is there proven by Shih in [11]. 

 

DEFINITION – 1  

A group complex G is said to be loop group of the complex K if there exists a 

PTCP E(τ) = G Xτ K such that T(E(τ)) is a contractible space. 

EXAMPLE: 

K(π, n) is of course a loop of K(π, n+1). By Leema 23.4, if K is a Kan complex, 

then L(K) is a loop group of K provided that L(K) admits a structure of 

simplicial group. 
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If K is a reduced complex and K0 = k0, we will let Kn denote 𝑠0
𝑛𝑘0. We now define 

a loop group of such a complex. 

DEFINITION – 2 Let K be a reduced complex. Define Gn(K) to be the free group 

generated by the elements of Kn+1 modulo the relations      s0x = en for x ϵ Kn .  

Gn(K) is of course a free group. If x ϵ Kn+1, let τ(x) denote the of x in Gn(K). 

Define face and degeneracy operators  

on G(K) by : 

τ(δ0x) δ0τ(x) = τ(δ1x) 

(T)  δiτ(x) = τ(δi+1x) if i > 0 

  δiτ(x) = τ(si+1x) if i ≥ 0. 

The δi and si extended uniquely to homomorphisms Gn(K) ⟶ Gn-1(K) and Gn(K) 

⟶ Gn+1(K). G(K)  so defined is easily verified to be a group complex, and τ : K 

→ G(K) is clearly a twisting function. We let E(τ) = G(K) xτ K. We must prove 

that T(E(τ)) is contractible, and it suffices to prove 𝜋1(T(E(τ))) = 0 and 

H̅n(E(τ)) = 0, n ≥ 0. 

LEMMA1 : 

  𝜋1(T(E(τ))) = 0. 

PROOF :Recall that 𝜋1(T(E(τ))) can be considered as a group having one 

generator for each 1-cell not in a maximal tree and one relation for each 2-cell. 

We regard non-degenerate simplices (𝑔́,x) as denoting the corresponding cells. The 

1-cells (s0𝑔́, x), x ∈ K1 non-degenerate and 𝑔́ ϵ G0(K), form a maximal tree. This 

holds since δ0(s0𝑔́, x) = (τ(x) 𝑔́,k0) and δ1(s0𝑔́, x) = ( 𝑔́,k0), which implies that 

any two 0-cells can be connected in one and only one way by 1-cells of the cited 

form. We must show that every 1-cell (𝑔́,x), 𝑔́ non-degenerate, homotopic to 

the product of 1-cells in the maximal tree and their inverses(reverses). The 2-cell 
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(s1𝑔́, s0x) shows that (𝑔́,x) is homotopic to (s0δ0𝑔́,x)(𝑔́,k1). If 𝑔́ = τ(y)-1𝑔́, the 

2-cell (s0𝑔́, y) shows that (𝑔́,δ1y) is homotopic to (𝑔́,δ0y) (s0δ1𝑔́, δ2y). If 𝑔́ = 

τ(y)𝑔́, the 2-cell (s0𝑔́, y) shows that (𝑔́,δ0y) is homotopic to the product of 

(𝑔́,δ1y) (s0δ1𝑔́, δ2y)
-1. Combining these relations, (𝑔́,x)  is homotopic to the 

product of (𝑔́,k1) with 1-cell of the maximal tree or their reverses, where the 

group theoretic length of 𝑔́. Inductively, since  

 e1 = s0e0, the result is proven. 

LEMMA 2 : 𝐻̅n(E(τ)) = 0, n ≥ 0. 

PROOF :   Consider 𝐶̅
n(E(τ)), where (e0, k0) is taken as base point. For 𝑔́ ϵ 

Gn(K) and x ϵ Kn+1, define [𝑔́,x] ϵ 𝐶̅
n(E(τ)) by : 

(i) [𝑔́,x] = (τ(x)𝑔́, δ0x) – (𝑔́, kn). 

Observe that [𝑔́, kn+1] = 0 and define B = {[𝑔́,x]⃒𝑥 ≠ kn+1}. Suppose for the 

moment that we know that B is a basis for the free Abelian group 𝐶̅
n(E(τ)), and 

define S : 𝐶̅
n(E(τ)) → 𝐶̅

n+1(E(τ)) by 

(ii) S[𝑔́,x] = ∑ (−1)𝑖𝑛
𝑖=0 [𝑠𝑖𝑔́(𝑠0)i+1(δ1)

ix]. 

Using the easily verified relationsAt this point we have developed all the requisite 

machinery to define twisting cochains. 

 

DEFINITION 3 : Let t ϵ C1(B;C(G)), so that tq:Cq(B)→Cq-1(G). 

Define dt: C(B) ⊗ C(F) → C(B) ⊗ C(F) by: 

(18)  dt(b ⊗ f) = d(b ⊗ f) + t ∩ (b ⊗ f). 

Using (8) and (9), we find 𝑑𝑡
2(b ⊗ f) = (δ(t) + t ∪ t) ∩ (b ⊗ f). t is said to 

be a twisting cochain if δ(t) + t ∪ t = 0, that is, if  
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(19) dtn + tn-1d + ∑ 𝑡𝑖
𝑛−1
𝑖=1  ∪ tn-1 = 0,  n >1, 

and if εt1 = 0 (so that (ε ⊗ ε)dt = (ε ⊗ ε)(t ∩) = 0). Then dt is called the 

differential twisted by t and C(B) ⊗ C(F) furnished with this differential is 

denoted by C(B) ⊗t C(F) and is called a twisted tensor product. Dually, 

Hom(C(B) ⊗t C(F),Λ) is given the differential δt defined by (17) with δt and dt 

replacing δ and d, or: 

(20) δt(h) = δ(h) + (-1)deg h+1h ∪ t. 

. Brown’s Theorem 

  Brown’s theorem states essentially that there is a natural way to 

assign to every twisting function τ a twisting cochain t in such a manner that 

C(F Xτ B) is chain homotopy equivalent to  C(B) ⊗t C(F). In the last section, 

this result will be used to construct the Serre spectral sequence. 

  Unless otherwise specified, the symbols C and C* will denote the 

normalized chain and cochain functors in this section and the next, and the 

symbol (n) will refer to formula (n) of section 30.  

  We will use the method of acyclic models, and we must first define a 

category, the objects of which are all twisted Cartesian products. 

DEFINITION 4 : 

  Let F Xτ B and F’ Xτ’ B’ be TCP’s with groups G and G’, and let Υ: G 

→ G’ be a simplicial homomorphism. 

A Υ-map θ: E(τ) → E(τ’) is a simplicial map such that 

   θ(f,b) = (ψ(b)α(f),β(b)), 

where α: F → F’ is a Υ-equivalent map, β: B → B’ is a simplicial map, and ψ: B → 

G’ is a function. Clearly p’θ = βp. We will write  θ = (α,β,ψ). θ is said to be Υ-
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special if Υτ = τ’β. The requirement that θ be a simplicial map is equivalent to 

the identities : 

   τ’β(b)δ0ψ(b) = ψ(δ0b)yτ(b) 

  (U) δiψ(b)   = ψ(δib)   if  i > 0 

   siψ(b)   = ψ(sib)   if  i ≥ 0. 

The composite of a Υ-map θ and Υ’-map θ’ is the Υ’Υ-map  

θ’θ = (α’α,β’β,(ψ’β).(Υ’ψ)). With the obvious identity maps, we have defined a 

category whose objects are all TCP’s and whose maps are all Υ-maps. If maps are 

required to be special, we obtain a subcategory with the same objects, which we 

shall call ℛ. 𝒫 will denote the subcategory of ℛ, the objects of which are all 

PTCP’s. Observe that if θ = (α,β,ψ) is a Υ-map of PTCP’s, then necessarily α = 

γ. If base complexes are required to be reduced, we obtain subcategory ℛ0 of ℛ 

and 𝒫0 of 𝒫. The categories ℛ0 and 𝒫0 will be of primary interest to us. 

  The symbol F xτ B will denote ambiguously an object of  

ℛ0 or the corresponding total complex. We now define model objects in the 

category ℛ0. Let ∆̅[n] denote ∆[n]/ ∆[n]0, where ∆[n]0 denotes of ℛ0 denoted 

the zero skeleton of ∆[q], and define the models Mp,q of ℛ0  by : 

(i) Mp,q = (G(∆̅[p] x ∆[q]) xτ(p) ∆̅[p]. 

For clarity, we have here denoted the following twisting function 

  ∆̅[p] → G(∆̅[p]) 

by τ(p). G(∆̅[p]) operators on the fibre G(∆̅[p] x ∆[q] via  

𝑔́(𝑔́′,u) = (𝑔́𝑔́′,u). clearly  

(ii) Mp,q = (G(∆̅[p] xτ(p) ∆̅[p]) x ∆[q]). 

Therefore the realization of each Mp,q is contracticible. 
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Using the models, we can assign a twisting cochain to each twisting function. We 

first need a definition. 

DEFINITION 5 : A twisting cochain on the category 𝒫0 is a function T which 

assigns a twisting cochain T(τ)ϵHom1(C(B),C(G)) to each twisting function τ : B 

→ G, B a reduced complex, in such a manner that the following conditions are 

satisfied : 

(T.1)  T(τ)(b) = e0 – τ-1(b) for all nondegenerate b ϵ B1 

(T.2)  If τ(b) = eq-1 for all b ϵ Bq and all q≤n, then T(τ)(b) =0 

  For all nondegenerate b ϵ Bq and all q≤n. 

(T.3)  If θ = (γ,β,ψ): G xτ B → G’ xτ’B’ is a Υ – special map of  

  PTCP’s, then the following diagram is commutative : 

       T(τ) 

     C(B)     C(G) 

        β*  T(τ’)     Υ* 

     C(B’)    C(G’)  

 

THEOREM 1 : There exists a twisting cochain on the category 𝒫0. 

Proof :- Let G xτ B be PTCP, B areduced complex. Define T(τ)1 by formula (T.1) 

and define T(τ)2 by : 

(T.4) T(τ)(b) = -τ-1(b) . s0 τ-1(δ0b) for all non-degenerate b ϵ B2. Clearly ε. 

T(τ)1 = 0, and dT(τ)2 + T(τ)1d + T(τ)1 U T(τ)1 = 0 is proven by an easy 

calculation. Condition (T.2) holds for n=2 since e1 is degenerate and therefore 

zero in C(G). Suppose inductively that T(τ)I has been defined for i < q, q > 2. 

We require that  

 dT(τ)q = -T(τ)q-1d – ∑ 𝑇(𝜏)
𝑞−1
𝑖=0 I U T(τ)q-i = Xq , say, 
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Clearly dXq = 0 . First consider G(∆̅[q]) xτ(q) ∆̅[q]. since Hn(G(∆̅[q])) = 0 for 

n>0, there exists m ∈ Cq-1(𝐺(∆̅[q])) such that d(m) = Xq(∆q). we define 

T(r(q))(∆q) = m. Next consider G(K)xτ(k)K, τ(K) : K → G(K), K any reduced 

complex, and let x ϵ Kq be non-degenerate. 𝑥̅:∆̅[q] → K includes 

G(𝑥̅):G(∆̅)[q])→G(K) and we define: 

T(τ(K))(x) = G(𝑥̅)*(m) ϵ Cq-1(G(K)). Then we have: 

dT(τ(K))(x)= G(𝑥̅)*d(m) = G(𝑥̅)*Xq(∆)q = Xq(𝑥̅(∆q)) = Xq(x). 

Finally, consider the arbitrary PTCP G xτ B and let b ϵ Bq be nondegenerate. If τ 

is induced by f(τ): B → W̅(G), define : 

      T(τ)(b) = Φ(f(τ))*[T(τ(B))(b)] ϵ Cq-1(G), where Φ(f(τ)): G(B)→G is as 

defined in Corollary 27.2. Then again we find dT(τ)(b) = Xq(b). Condition (T.2) 

holds since for any c ϵ Bq , Φ(f(τ))(τ(B)(c)) = τ(c), and since eq-1 is degenerate. 

Clearly condition (T.3) is satisfied, and this completes the proof. 

  CONCLUSION :We can now define the two functors A and BT :ℛ0 → 𝒞 that 

we wish to compare by the method of acyclic models. Thus define A(F xτ B) = 

C(F xτ B) and BT(F xτ B) = C(B) ⊗t C(F), where t = T(τ), T being a fixed 

twisting cochain on the category 𝒫0. Observe that θ = (α,β,ψ) is a Υ-special map 

of TCP’s, then (T.3) and (10) of above Lemma  guarantee that BT(θ) = β* ⊗ α* 

is a chain map. 
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